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Abstract. We analyse the integrability of various types of intregrodifferential equations
belonging to the Benjamin–Ono family. The method used is a combination of two well
known integrability detectors: the Painlevé method (for continuous systems) and the singularity
confinement (for discrete systems). We confirm the results of Hietarinta based on the study of
multisoliton solutions. In particular, we show that the third-order extension to Benjamin–Ono
that he proposed does pass the test and is thus an excellent candidate for integrability.

Integrable equations involving the Hilbert transform have been known since the 1970s, the
Benjamin–Ono (BO) equation [1] being the prototype,

ut + 2uux + Huxx = 0 (1)

where the Hilbert transform is given by

Hf (x) = 1

π
P

∫ ∞

−∞

f (z)

z − x
dz. (2)

Related to BO is the intermediate-long wave equation (ILW) [2] involving also an integral
transform

ut + h−1ux + 2uux + T uxx = 0 (3)

where the ‘coth’ transform is given by

Tf (x) = 1

2h
P

∫ ∞

−∞
coth

π(z − x)

2h
f (z) dz. (4)

The integrability of these equations is already established in the sense that their Lax pair is
known [3, 4] and the inverse scattering transform (IST) has been performed [5].

However, these equations present a difficulty as far as the Painlevé integrability criterion
is concerned. The latter requires that for all integrable equations the solutions be free of
movable critical singularities. ‘Movable’ in this last sentence means a manifold that depends
on the initial data (and the further requirement is that it be non-characteristic), while ‘critical’
is a singularity that induces multivaluedness. The Painlevé test is a local one, it examines
locally the behaviour at each singularity taken in isolation. Since BO-type equations are
non-local by construction one can wonder how one can apply this local integrability criterion
to them.
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A first answer to this puzzle was presented in [6]. It was shown that the BO equations
can be written as a system of differential equations in(2 + 1) dimensions complemented
by a boundary condition. We have, in fact, a first equation that is simply linear (Laplace’s
equation),

uxx + uyy = 0 (5a)

with boundary conditionu = f (x, t) at y = 0 and∂u/∂y = 0 aty = −h for ILW or u = 0
at y = −∞ for BO. Written in (2+ 1) dimensions the BO/ILW equations assume the form
(5a, b) with

ut + 2uux + uxy = 0 at y = 0. (5b)

Since in this formulation the BO equations are purely local, the Painlevé criterion can be
(and has been) applied in a straightforward way.

However, this trick was not the final solution to the problem. The essential difficulty
can be understood if one looks at the bilinear formulation of the BO equation [7]. It is well
known that BO can be written as

(iDt − D2
x)F+ · F− = 0 (6)

where D is the Hirota operator defined through its action on the dot productDf · g =
(∂x − ∂x ′)f (x)g(x ′)|x=x ′ = f ′(x)g(x) − f (x)g′(x). The τ -functionsF± are defined in the
upper(lower) complexx-plane. Thus BO relates the function at a point in the upper half-
plane to a point in the lower half-plane. From the point of view of singularity analysis these
two functions are completely independent: the locations of the singularities in the upper and
lower half-planes are nota priori related. Thus we have, in some sense, only one equation
with two unknown functions and the singularity analysis, cannot be carried out. Similarly,
in the case of ILW we have

(iDt + ih−1Dx − D2
x)F+ · F− = 0 (7)

whereF± = F(x ± ih, t) with h real. The non-locality is due to the fact that (7) relates the
function at a point(x + ih) to the function at the point(x − ih). Again, for the traditional
singularity analysisF+ andF− are considered as different objects and, again, we have only
one equation fortwo unknowns. The way out of this deadend is based on the observation
that F is defined (in the complexx-plane) in strips parallel to the realx-axis of width 2h.
Thus (7) can be viewed as a mapping relating theFs in two adjacent strips. We have
proposed this interpretation in [8] and it made possible the treatment of the equations of the
BO family as differential-difference systems.

Let us illustrate this approach though a simple examples based on the ILW. Before
proceeding further we remark that for the implementation of singularity analysis we can
introduce a newt-variable in order to absorb the ih−1Dx term and bring the equation to the
form

(iDt − D2
x)F+ · F− = 0 (8)

thus formally equivalent to BO (although the two remain different as far as IST is concerned).
Instead of working out this (after all) uninteresting example let us investigate what are the
source terms compatible with integrability:

(Dt + D2
x + µ(x, t))F+ · F− = 0 (9)

where thet variable has again been transformed so as to absorb the i factor. We recall
that theτ -functions F can only have zeros: critical singularities may appear only as a
consequence of a vanishingτ -function. Let us, for the sake of simplicity in notation, use
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the symbolsF, G andH for the τ -functions at the points(x − 3ih), (x − ih) and(x + ih),
respectively. The idea is thatF is regular around some singularity manifoldφ = 0 on
which G has a simple zero. The Painlevé property requirement [9] is that this vanishingG

do not induce a critical singularity onH (or subsequentτ -functions). Moreover, since the
system is a differential-differenceone, the singularity confinement requirement [10] is that
the singularity, i.e. the vanishing ofG, does not propagate indefinitely with the mapping
(9) from one strip to the other but disappears after some iteration. Here we will ask thatH

not only have no logarithmic singularities but also be finite on the manifoldφ = 0. In order
to implement the singularity analysis algorithm, we start with a regularF which can be
expanded in powers ofφ asF = ∑

k=0 Fkφ
k while G has the expansionG = ∑

k=1 Gkφ
k.

From (9), rewritten in explicit form as

FxxG − 2FxGx + FGxx + FtG − FGt + µFG = 0 (10)

we can compute theGk in terms of theFk. The ‘resonances’ [11] of this equation being
−1 and 0, we haveφ and G1 as free functions. (The calculation is greatly simplified if
one uses the Kruskal [12] ansatz:φ = x + f (t).) Next we write the equivalent to (10)
relating G and H . The resonances are 0 and 3 and thus, if we expandH = ∑

k=0 Hkφ
k,

H0 and H3 must be free. This is not automatically true forH3 and a condition must be
satisfied. ComputingH1 andH2 we find that the resonance condition is indeed satisfied for
any choice ofµ, and therefore the ILW/BO equation with source termµ(x, t) is integrable
for any sourceµ. Thus, the combination of Painlevé analysis with singularity confinement
makes possible the treatment of integrodifferential equations of the BO family.

To be fair, we must point out here that the analysis we presented was limited to the
examination of confinement in one step. In particular, we have assumed thatH was finite.
However, given the form of equation (10),H can have also a triple zero, i.e.H ∝ φ3. If
we assume this leading behaviour forH we find out that the confinement of this singularity
requires (at minimum two) additional steps. An exhaustive analysis should consider the case
of confinement after an arbitrary number of steps. If, for instance, at some stage we have a
singularG with leading behaviourG ∝ φn with n = m(m + 1)/2 with integerm then the
leading behaviour ofH is H ∝ φk with eitherk = m(m − 1)/2 or k = (m + 1)(m + 2)/2.
The first corresponds to a less singular behaviour while the second is a more singular
one. Following the first, we move towards confinement and it is important to note that for
equation (10) this possibility always exists. Although the pattern of confined singularities
may be fairly complicated, it is our experience that the simplest singularity pattern contains
already the essential integrability constraints.

Another, well known, integrability criterion for partial differential equations (PDEs) is
the existence of multisoliton solutions. In a series of papers [13], Hietarinta has identified
bilinear PDEs belonging to various families (KdV, mKdV, SG, NLS, BO) that possess
multisoliton solutions. The analysis was performed up to the level of the first non-
trivial, usually three-, but sometimes four-, soliton solution. These results confirmed the
integrability of known cases and suggested the integrability of some new ones. The results
of the multisoliton study were strengthened in [14] where we have shown that the equations
that possess multisoliton solutions also satisfy the Painlevé integrability criterion. In that
study the analysis of the BO-type equation was missing since, at that time, their singularity
confinement approach had not yet been developed. In this paper we shall complete the
comparison of the two methods by presenting the confined singularity analysis of the BO
equations of Hietarinta. We shall not go into all the technical details but limit ourselves to
the results.
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The first equation identified is

(DxDt + aDx + bDt)F+ · F− = 0 (11)

which is a well known integrable equation due to Matsuno [15]. The appearance of the
aDx + bDt term suggests that aDy term might be compatible with integrability. However,
it turns out that this equation does not have multisoliton solutions. The confined singularity
results areexactly the same: Matsuno’s equation does pass the test, while the(2 + 1)-
dimensional extension fails.

The second equation is

(D3
x + D2

x + Dt)F+ · F− = 0 (12)

which was obtained for the first time by Hietarinta [13]. The confined singularity analysis
can be applied along the lines similar to that of (9). (However, here we have two simple
behaviours:G vanishing likeφ or φ2. The former has resonances 0,1 and 5 while the latter
has only 0 and 2 as positive resonances.) The result is that (12) does pass the test and thus
we expect the Hietarinta-BO equation to be integrable.

Another interesting equation that we will analyse here is the intermediate nonlinear
Schr̈odinger equation (INLS) proposed recently by Pelinovsky [16] in order to describe
internal waves in a two-layer stratified fluid. Written schematically, this equation assumes
the form

iut = uxx + u(i + T )|u|2x + µu (13)

whereT is the coth-integral operator (2) appearing in the ILW equation andµ(x, t) is a
source term. The bilinearization of the INLS equation was performed by Pelinovsky himself
who rewrote (13) (in a frame propagating with velocityc) as

(iDt + icDx + D2
x + µ)F · G = 0 (14a)

(iDt + icDx + D2
x + µ)G · F = 0 (14b)

iDxF · F + c(GG − FF) = 0. (14c)

Furthermore, he remarked that these equations were closely related to the bilinear Bäcklund
transforms of BO proposed by Nakamura [17]:

(iDt − 2iλDx − D2
x + µ)F · G = 0 (15a)

(iDt − 2iλDx − D2
x + µ)F · G = 0 (15b)

(Dx + iλ)F · G = iνFG (15c)

where λ, µ and ν are constants. Here is their logical link that will also lead to a
straightforward implementation of the singularity confinement test: we start from (14a)
for F, G in a given strip and look forF, G in the next strip satisfying (14b) and (14c); but
(14b) is just the upshift of (14a) provided we permuteF andG. In this case (14c) becomes

iDxF · G + c(GF − FG) = 0 (16)

which is contained in Nakamura’s (15c). Thus, it suffices to analyse Nakamura’s equation
which we rewrite as

(Dt + D2
x + µ)F · G = 0 (17a)

(Dt + D2
x + µ)F · G = 0 (17b)

DxF · G + λ(GF − FG) = 0 (17c)

where we have redefinedx and t so as to absorb the i’s and theλDx term in equations
(17a, b). Moreover, we have limited ourselves toν = λ and introduced a source term
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µ which we allow to depend on the number of the strip we are in (clearly an unphysical
assumption but one which makes sense in as far as (17) is viewed just as a differential-
difference system). We remark readily that (17c) allows one to compute explicitlyF from
the knowledge ofF, G andG.

The implementation of singularity analysis to the system (17) is straightforward. We
consider that theτ -functionsF andG (obeying the down-shift of equation (17a)) are regular.
The singularity corresponds to the vanishing of eitherF or G on some singularity manifold
φ = 0. Given the form of equations (17a) and the down-shift of (17c), linking F andG to
the regularF andG, we find thatF andG can only vanish linearly withφ. The singularity
confinement requirement is that bothF and G be regular. Using (17c) we can eliminate
F and obtain a third-order equation forG. Using this equation we find that confinement
in one step is always possible. Indeed, whenG ∝ φ we find thatG behaves likeφ0 or
φ3. The first case corresponds to a regularG, provided no logarithmic singularities appear.
In order to check this we compute the resonances associated with this behaviour. We find
r = 0, 2, 3 and, moreover, the resonance conditions are satisfied. Similarly, whenF ∝ φ

we find thatG behaves likeφ0 or φ1. The first case has resonancesr = 0, 1, 2 and the
resonance condition atr = 1 is µ = µ. Thus, for integrability, the source term cannot
depend on the strip we are in. We must point out here that the behaviourG ∝ φ3 or
G ∝ φ corresponds to a singularity that does not confine in one step. The condition for the
absence of logarithmic singularities for these behaviours is, again,µ = µ. The study of the
confinement of these singularities should, in principle, be pursued further. In fact, as we
have explained earlier we must, for completeness, consider all the patterns of confinement
in any number of steps. However, as expected, the confinement in one step furnishes the
essential integrability constraintµ = µ. Thus with this condition the Nakamura–Pelinovsky
equations are integrable.

To summarize, we remark that the combination of Painlevé analysis and the singularity
confinement approach is a most adequate tool for the investigation of the BO-type
integrodifferential equations. The key to this application is the interpretation of the ILW
equation as a differential-difference equation. In this paper we have shown that the ILW
equation can be integrably extended so as to include a source term. The results of Hietarinta
(based on the study of multisoliton solutions) on the Matsuno equation and on the extension
of BO through higher-order terms were confirmed by our analysis. In particular, the
Hietarinta-BO equation must be a new integrable equation. One important remark is that the
use of a ‘discrete’ method (the singularity confinement) is essential for the investigation of
the equations of the BO family. These equations are non-local and a continuous approach
is just inadequate for their treatment. Finally, we should point out that the use of the
bilinear formalism was of capital importance in our approach: it makes the application of
the singularity confinement algorithm really straightforward.
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